Solution of System of Viscous Burgers’ Equation via Collocation Method

Hamad Mohammed Salih1,2, Luma Naji Mohammed Tawfiq3,*, Zainor Ridzuan Yahya1

1Institute for Engineering Mathematics, University Malaysia Perlis, Perlis, Malaysia
2Department of Mathematics, University of Anbar, Al-Anbar, Iraq
3Department of Mathematics, University of Bagdad, Bagdad, Iraq

*Author to whom correspondence should be addressed; Email: dr.lumanaji@yahoo.com

Article history: Received 13 March 2018, Revised 26 April 2018, Accepted 5 August 2018, Published 20 August 2018.

Abstract: This paper presents a new approach to solve one dimensional system viscous Burgers’ equation with boundary conditions Dirichlet type using collocation method based on cubic trigonometric B-spline. The usual finite difference scheme is applied to discretize the time derivative. Cubic Trigonometric B-spline basis functions are used as an interpolating function in the space dimension. Two test problems are presented to confirm the accuracy and efficiency of the new scheme and to show the performance of trigonometric basis functions. The numerical results are found to be in good agreement with known exact solutions and also with earlier studies.

Keywords: PDE, Burgers’ equation, One dimensional coupled viscous Burgers’ equation, cubic trigonometric B-spline basis functions, cubic trigonometric B-spline collocation method, stability

Mathematics Subject Classification: 35A, 35B, 35C, 65M, 34D

1. Introduction

Partial differential equations (PDEs) have numerous essential applications in various fields of science and engineering such as fluid mechanic, thermodynamics, heat transfer and physics. Most of

Copyright © 2018 by Modern Scientific Press Company, Florida, USA